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Abstract 

The problem of giving a geometric description of external forces acting on general charged 
test particles is discussed, within the framework of General Relativity. The concept of 
a pointlike test particle is analyzed; and we find that it is possible to introduce a strongly 
localized interaction between the particle and external fields, while still retaining the 
notion of a test (i.e. non-radiating) particle, in such a way that the particle trajectory is 
geodesic in the local space-time geometry, irrespective of the charges coupling it to 
external matter fields or to space-time curvature. The phenomenon of deviation, due to 
differential forces between (identically charged) noninteracting point particles, is also 
considered; we find that a geometric description of such forces requires introducing 
additional geometric objects into space-time, making it non-Riemannian. It is shown 
that a quite general differential force may be described geometrically as a geodesic 
deviation in a nonsymmetric affine space, endowed with a torsion field. The physical 
properties of the torsion, and its relation to geometrodynamics, are discussed. 

1. Introduction: The Geometrization o f  Charge 

The central  idea  o f  geomet rodynamics ,  or  ' a l ready  unified field theory '  
(Wheeler ,  1962), in Genera l  Rela t iv i ty  may  be briefly out l ined as fol lows:  
Let  ~ denote  a set o f  ma t te r  (i.e. nongrav i ta t iona l )  field, with field equat ions  
der ivable  f rom an  act ion principle~ 

8LM - 
3• = O, LM = L M ( r 1 6 2  (1.1) 

o f  some specified differential  order .  The  symmetr ized  mat te r  energy tensor  
Etk($ ; iba ; . . . ) ,  as der ived f rom (1.1) in the usual  way, will then in general  
satisfy a number  o f  s t ructura l  r e l a t ions - - i . e ,  a lgebraic  condi t ions  on its 
componen t s ,  character is t ic  o f  the fields q~--which fol low f rom the fo rm of  

i" On leave of absence 1970-71 from: Department of Physics, Oslo University, Oslo, 
Norway. 

.~ Our notation is as follows: Lower case Latin (Greek) indices range and sum over 
1,... 4 (1,... 3); the metric has the signature of the Lorentz matrix ~ = diag (1,1,1,-1); 
commas denote partial derivatives; the signs of the Riemann and Ricci tensors are 
determined by the definitions 

R~ktm =" 2[/'~ktt.,.l +/'%tz F~,.l~ 
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the Lagrangian (1.1). Moreover, Elk is the source of a gravitational field, 
namely the metric tensor g~k, according to Einstein's field equations 

1 3 
a/(-g) 3g,k ( ~ ( - g ) R  + LM) = G 'k - Eik = 0 (1.2) 

in suitable units. Regarding (1.1)-(1.2) as a set of coupled equations in r 
and gik, we may ask whether this set is restrictive enough to yield a solution, 
i.e. a local or functional relation 

r = ~(gik; g,k.~ ; . . . )  (1.3) 

for r in terms of the metric tensor and its derivatives. If  such a solution can 
be obtained in a physically unique way [i.e. up to any arbitrariness in gauge, 
phase, etc., inherent in the original physical description (1.1) of r then 
the fields r are said to be geometrized. This means that the physical laws 
governing r may be written as laws governing space-time geometry. 
Equations (1.1) thus, by (1.3), takes the form of a set of equations governing 
the metric tensor. In other words: the physics of the fields r may be 
described completely as the behaviour of a certain type of gravitational 
field; the field equations (1.1), when (1.3) is substituted, then restrict the 
geometry of space-time in such a way that it exhibits just those observable 
phenomena usually attributed to the presence of the matter fields. 

The problem is, of course, to obtain formally the solution (1.3). This 
has been done in a number of important special cases, such as the electro- 
magnetic field (Wheeler, 1962, see in particular, pp. 16-87 and 225-253), 
scalar meson fields (KuchaL 1963; Penney, 1965), and also in part for the 
Weyl spinor neutrino field (Bergmann, 1960). In each case the field equations 
(1.1) were explicitly employed; and a general proof of the feasibility of 
such a geometrization of matter fields would presumably require a suitable 
delimitation of the various types of interactions and couplings allowed in 
the theory. 

In this paper we shall discuss the question of whether it is possible (or 
even meaningful) to perform a similar geometrization of the action of a 
field on charged particles; more specifically we consider the motion of a 
test particle in some external field 0. (0-= {r here denotes a set of un- 
specified matter fields r plus the gravitational field g~k). We define a test 
particle as a timelike trajectory, on which the fields 0 are nonsingular, 
corresponding to the limiting procedure of Infeld & Schild (1949) and 
Chase (1954), who consider neutral and electrically charged mass mono- 
poles, respectively. However, we allow our particle to carry any number of 
scalar characteristics, such as mass and various kinds of charge (electric, 
mesonic, etc.); moreover, it may possess directive properties, such as 
multipole structure or intrinsic angular momentum (spin). All these 
intrinsic attributes, except mass, through which the particle is coupled to 
the fields 0, will be referred to collectively as dynamical charges. Our 
treatment of both fields and particles will be purely classical, and only 
particles with nonzero rest masses will be considered. 
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The action of the fields 0 on the particle is described by a force law: 

DU k 
Ds =fk(r  g,k, U k, m, DC) (1.4) 

where the left-hand side is the absolute derivative (Synge & Schild, 1948) 
of the unit tangent vector U k along the trajectory, DC denotes the set of 
dynamical charges carried by the particle, and the right-hand side is a 
vector which we shall call the 4-force. We shall assume t h a t f  k depends on 
the fields 0 and their derivatives up to some finite order on the trajectory, 
but not on the field values elsewhere, and that it depends homogeneously 
on each DC: in other words, the motion (1.4) is assumed to be geodesic 
when the particle carries no charge. On the other h a n d , f  k need not depend 
homogeneously on r it is, for instance, well known that a spinning mass 
dipole will deviate from geodesic motion, due to the coupling of its spin 
to the Riemann tensor (Papapetrou, 1951). 

How can one define a geometrization of the force (1.4) in a physically 
meaningful way ? To see this, we have to look closer at the notion of a test 
particle. A basic conceptual problem of the theory of point particles is that 
of their infinite self-fields (which essentially result from the formal require- 
ment that a finite extensive quantity, such as mass, be squeezed into an 
infinitesimal volume), and in particular the disentangling of these fields 
from the external or 'background' field acting on the particles. The Infeld- 
Schild limiting procedure copes with this problem, and in effect defines test 
particles, by assuming that it is possible to define a background (matter and 
gravitation) field, as that obtaining in the absence of the particles, and that 
their presence does not affect this background. This, which clearly excludes 
any radiative reaction from a particle, is achieved formally by letting its 
mass and charges 'go to zero'. [In fact, the very concept of a 'point particle' 
can only be defined relative to some background field; the particle properties 
(mass and charges) are thought of as concentrated into a spatial volume so 
small that the field may be regarded as uniform within it. Thus, for instance, 
the planets may be treated as point particles in the solar gravitational force 
field, to the extent that the latter may be considered as uniform over distances 
of the order of a planetary diameter.] Any observed anomaly of its motion 
(i.e. deviation from geodicity) is then ascribed to some intrinsic particle 
attribute (charge) which makes it 'respond' to the action of background 
matter fields, or to inhomogeneities of the background gravitational field, 
as determined by the force law (1.4). 

However, any particle with nonzero mass and charges, however small, 
will obviously affect its field environment at sufficiently small distances; in 
other words, the concept of a test particle breaks down if one approaches 
the particle too closely. Hence, the basic physical assumptions underlying 
the Infeld-Schild approach may be put as follows: No radiative reaction 
from the particle is detectable at reasonable distances--i.e, outside what 
might be called its 'near zone'. The background field observed at these 
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distances is then extrapolated in toward the trajectory 'as if the particle 
were not there', so to speak: i.e. its value in the near zone is assumed to be 
that which would have obtained in the absence of the particle. The essential 
point is that there will always be a small spatial region surrounding the 
particle (the near zone) where the background field is physically unobserv- 
able, as long as the particle is treated as a test particle; in particular, the 
background field values on the trajectory is always deduced by extrapolation 
in from the far zone. In fact, the only thing we can be reasonably sure of is 
that the actual field in the near zone, if it were measured, will not be equal 
to the extrapolated background field, since--as noted--the particle will 
in general affect the field in its immediate vicinity. 

The usual notion of a charged test particle thus ignores the effect of the 
particle on its field environment, and explains its nongeodesic motion in 
the background geometry ~ (as extrapolated in from the far zone) by 
postulating that the particle carries dynamical charges, coupling it to the 
external background field 0. We want to consider the hypothesis that a 
particle modifies the space-time geometry in its near zone, in such a way 
that in this modified geometry ~ the particle motion is geodesic, irrespective 
of the background field 0 on the trajectory. The particle will thus move as 
a neutral mass monopole in #.  We shall then say that the force (1.4) on 
the particle has been geometrized: the physical interpretation is that the 
charges, previously assumed to be internal particle degrees of freedom, are 
now to be regarded as degrees of freedom in the local space-time geometry 

on the trajectory. 
Summarizing briefly: the usual conception of a test particle is that it does 

not affect the field in its vicinity; the field-particle coupling is one-way, 
and mediated by the charges. The external forces then appear as fixed 
constraints, determining the particle motion. In reality, however, there will 
of course always be an interaction betwee n particle and field: a test particle 
is, in effect, an idealized description of the physical situation when the 
effects of this interaction are imperceptible outside a small spatial region 
J "  (the near zone) surrounding the particle. We are investigating the 
possibility that this localized interaction may modify the space-time 
geometry ~ in ~-, in such a way that the modified geometry ~ can take 
over the functions of the charges coupling the particle to 0: i.e. that it will 
constrain the particle to move as if  uncharged, irrespective of the external 
fields 0 on its trajectory. At the same time, we want to retain the notion 
of a test particle, acted on by an external field, but not reacting back upon 
it; hence we shall still treat the modified geometry # as a fixed constraint 
on the particle motion. 

In the following sections, we show (Section 2) that it is possible to 
geometrize, in the sense defined above, any 4-force--i.e. the action of any 
set of external fields on a particle carrying any combination of dynamical 
charges--by suitably modifying the near zone geometry. We find that this 
modification does not affect the validity of the matter and gravitational 
field equations, though it may introduce new matter field sources in the 
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near zone. However, the differential forces between neighbouring identi- 
cally charged test particles can not be geometrized in this way, essentially 
because the notion of noninteracting neighbouring pointlike particles is 
incompatible with that of a finite near zone. In order to describe differential 
forces in geometric terms, it is necessary to introduce additional geometric 
objects into space-time, making the latter non-Riemannian. It is shown 
(Section 3) that it is possible to achieve a geometric description of quite 
general differential forces by means of a torsion field (i.e. a nonsymmetric 
connection). In Section 4, we discuss the physical interpretation of our 
results, and in particular the relation of the torsion to geometro- 
dynamics: i.e. physics described within the framework of purely 
Riemannian geometry. 

2. The M e t r i c  Perturbat ion 

Let 27 be any space-time region satisfying the Lichnerowicz regularity 
criterion [i.e. at least C 3 in the metric, except possibly for junction 3-surfaces, 
on which it is at least C 1, compare Synge (1960)], and let C be any smooth 
nongeodesic timelike trajectory in 27, described parametrically in some 
coordinate frame (x) covering X by functions x k = xk(s) satisfying 

])2x~ dZxk  1 "k dxZdx= f k ( s )  (2.1) 
Ds  2 - ds 2 + z,,-ds ds 

where I'(m(x) is the Christoffel connection of the metric tensor g~k(x) in 27, 
and s is the arc length of C. Henceforth equalities valid on C, but not 

c 
necessarily elsewhere in 27, will be denoted by the sign =. 

We now choose the coordinates (x) to be a rest f r a m e  of C: i.e. such that 
the worldline of its spatial origin (0,0,0,x 4) coincides with C, while the 
coordinate time x 4 =- t on C coincides with the (absolute value of the) arc 
length s of C. This implies that 

d z x ~ c dx  ~ c 
- -  = 0 ,  dx  4 s ~/(-ds 2) (2.2) 

ds 2 ds 

so that (2.1) reduces to 

_r,,~ 4 c _ f k  (2.3) 

The coordinate transformation (x) --~ (x') defined by 

x ~ = x ~" - �89 ~" x "  v ~ , ( x )  

readily yields 

r C r C l C 
= g 4 4 , 4  = ~v9"~ 4 ~" 0 gik,/3 

, C , C , C 
g l k , j 8 4  = g 4 4 , 4 4  = gee/L44 = 0 

(2.4) 

(2.5) 
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Since (2.2), (2.3) are not affected by (2.4), (x') is still a rest frame of C; 
moreover we may orient spatial axes so that 

C r C 
g~t/3 = ~ctfl, g44 = - -1  (2.6) 

the latter as a consequence of (2.2). 
[Actually, according to a theorem due to Fermi (1922), it is always 

possible to normalize the metric and its first derivatives on C to the Min- 
t C t C 

kowski values g~k = ~Tik, gJk,~ = 0; however, this cannot be carried out in a 
rest frame, unless C is geodesic. The normalization (2.5) leaves three 
arbitrary nonzero metric derivatives g4~.4 to allow for an arbitrary non- 
vanishing 4-force, since lowering the index in (2.3) only yields three non- 
trivial equations 

/ ~ 4 4  C C , = g4~,4  = --f , ,  ( 2 . 7 )  

( B o t h / ~ 4 , 4 4  andf~, but n o t f  4', vanish on C in the rest frame (x').) Hence- 
forth we assume the normalization (2.2), (2.3), (2.5), (2.6) of the coordinates 
on C, which will be referred to as the C-gauge, and drop dashes.] 

The Riemann tensor in 27 may be written in the form 

R,ktra = �89 q- gkm,il - -  g,m,kt --  gkt,tm) -}- grs(F[t  ]-'~m --  f 'rm ]-'~t) ( 2 . 8 )  

which reduces on C to 

Riki  m c -~(gil.krn-t-gkm,,t glm,kZ gkt,tm) ( 2 . 9 )  

Let C be enclosed in a timelike tube ~-- of finite cross-section. By this, 
we mean that the intersection of J -  with any instantaneous spacelike 
hypersurface t = const, is compact, with a finite 3-volume ~ bounded by 
a 2-surface a~ of finite area; both cr and a~ may vary with t. The idea is to 
assume that the interior of J "  is the near zone of a particle with trajectory 
C; the space-time metric g~k(x) in ~-- then represents the background metric 
tensor, as extrapolated in from the far zone, see the discussion in Section 1. 

Consider now a finite perturbation of  the metric tensor in 27: 

g,k(x) ~ ~,k(X) = g,k(X) + h,k(X) (2.10) 

where the perturbation functions hik have the following form: 

hik(x) = (~i ~ ~k 4 + ~i 4 8k~)L~(t) + �89 X ~ X v + 0 3 (2.11) 

when expanded about the worldline C: (0,0,0, t). Here 0 3 denotes terms of 
third and higher orders in x, and L~ and K~k = Kkz are as yet unspecified 
functions of t. The h~k are assumed to have the same regularity properties 
as g~k, and to fall very rapidly (say, exponentially) to zero outside the 
tube J - .  Note that (2.10) is not a coordinate transformation, but a change 
in the geometry of Z', formally represented as a finite perturbation of  the 
metric tensor in a f ixed coordinate frame. Hence the C-gauge, which 
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defined the frame (x) on C up to certain second metric derivatives, should 
be valid in the perturbed geometry as well. This is easily established: we 
read off from (2.11) that the only nonvanishing h~k and first and second 
derivatives of h~k on C are 

h~ 4 c L~, h~4, 4 c L~.4, h~4,44 c L~,44, h~k.~,v c KikS~,v (2.12) 

It then follows immediately that the C-gauge (2.2), (2.3), (2.5), (2.6) holds 
in the perturbed metric as well. Henceforth barred quantities refer to the 
perturbed or modified geometry # in 27, and unbarred correspondingly 
to ~ .  

Before specifying the perturbation in detail, let us consider its general 
effects on the matter and gravitational fields in 22. The former may be 
expected to change: r --> ~(x) = r +Ar We shall assume that 
Aq, always falls off outside 3 -  like h~k. This is consistent with the basic 
assumption that the fields generated by a test particle are not physically 
observable outside the near zone; thus A~, like h,k, is effectively localized 
inside J ' .  

This raises the question of  sources in 27. Namely, it follows from the local 
validity of the Principleof Equivalence that the matter field equations (1.1) 
have the same form in f~ as in f~: they both reduce to the Lorentz-invariant 
equations of Special Relativity in the appropriate limit. Hence the matter 
energy tensor E~k(~) has the same algebraic structure as E~k(r Likewise, 
the gravitational field equations (1.2) hold in form both in ~ and # .  
However, the new Einstein tensor 6,k will not generally have the same 
algebraic properties as G~,, which means that the source of G,, in (1.2) 
cannot be E,,(~) alone. Thus the perturbation (2.10) will in general 'create' 
new matter field sources, perceptible only inside the tube 3-. The physical 
interpretation of these new sources, and the possibility of avoiding them, 
will be discussed in Section 4; their possible existence will not affect the 
conclusions of this section or the next. 

The Riemann tensor on C changes by the amount 

dR~kzm - Riklm - R i k l m  

C 
= �89 + hkm,~ -- h~m,kz -- hkz.~m) (2.13) 

Equation (2.7) for C still holds in ~ ,  taking the form 

]~ ,44  C g4c~,4 C --?ct (2 .14)  

so that 

f~ c f a  - ha4.4 c f ~  _La .  4 (2.15) 

In order to make C a geodesic in # ,  we must therefore take 
t 

L~(t) = ~ fAu)du (2.16) 
to 
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It will be convenient to take the constants of integration such that ~ct4 C 0, 

i.e. gzk c ~Tik, gik.Z c 0. The Einstein tensor on C then becomes 

Gi k C ~ad ~ 1 adT~bC ~abc d (2.17) = '1 Jt~.aikd - -  -~7]i k 9~ 

whence, by (2.13), 

P~k --- dig - 7] ad Raikd -~ �89 k 7] ad 7~ be Rabc d 

C ~ a d A R a i k  d -  1~ mad b c A o  = ~'lil~'l 9~ .r (2.18) 
This may be written in matrix form as follows: 

10 
Pa(t) = ~. MaBKB(t), A,B ----- 1,2 . . . .  ,10 (2.19) 

B=I 

the details of  ordering, etc., are set out in Appendix A. The column vector 
Pa is the left-hand side of (2.18) written as an ordered set of ten functions 
of  t; they depend on both the original space-time curvature on C and on 
the value of the Einstein tensor on C after the perturbation. The 10 • 10- 
matrix MAB is numerical; its components may be found by substituting 
(2.13) into (2.18), see Appendix A. 

We may now ask: given an arbitrary unperturbed curvature Rtklm in 27, 
how freely can we choose the Gi~ and still be assured that (2.19) possesses 
solutions KB(t)? In Appendix A it is shown that the matrix MaB in (2.19) 
is nonsingular, and hence that (2.19) possesses unique solutions KB(t) for 
any choice of  Pa(t). Since the Pa depend on both the unperturbed space- 
time curvature Rikt,, and the perturbed Einstein tensor G~k on C, by (2.18), 
it follows that: for any set of  background matter and gravitational fields 0 
in ~ ,  the perturbation (2.10) can be chosen such as to (i) make C geodesic 
in f~, and (ii) give dik--and hence the matter field energy tensor J~ik--any 
desired value on C. Hence the particle moves on a geodesic in 9 ,  regardless 
of  the matter fields in its immediate vicinity. This we interpret as follows: 
the particle has been 'decoupled' from the matter fields in Z', and is now to 
be regarded as 'neutral', its matter charge having been 'transferred' into 
the surrounding local space-time geometry. An analogous argument holds 
for any coupling of the particle to the inhomogeneities of the gravitational 
field, e.g. the spin-curvature coupling to the Riemann tensor (Papapetrou, 
1951): ARiktm on C, depending only on second spatial derivatives of hik, 
is left completely unrestricted by the requirement (2.16), which constrains 
C to be geodesic in f~; hence/~kz,, may be ascribed arbitrary values on C, 
without affecting the motion of the particle in 9 .  From this we conclude 
that the particle may now be regarded as 'spinless'---i.e. as a mass monopole 
in the geometry f~. 

3. Differential Forces; Non-Riemannian Geometry 
We now consider the phenomenon of deviation: i.e. the differential 

forces between neighbouring identically charged particles in the force field 
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fk ,  denoting the worldlines of the particles in 2' by C and C'. I f  ~X" 
(c = infinitesimal constan0 is the separation vector between C and C'  in 
the instantaneous 3-space t---const., the change of X" in ff  is given by 

D2 X a [~ ,  dx~ dx ~ ) 
Ds 2 k 11 ~ca~-s-- ~ +f";a X a (3.1) 

where ; means covariant derivative in Riemannian geometry. It is thus 
produced partly by the ordinary geodesic deviation (Synge, 1960, p. 19) 
between C and C' - -or ,  rather, between geodesics tangent to C, C'  at 
t = const.--and partly by the differential matter force due to the inhomo- 
geneity of the external field fk .  While the former is a purely geometric 
effect, independent of the intrinsic properties of the particles, the latter 
depends on the particle mass and charges, as well as on the geometry ft. 

How, then, can we describe the total differential force (3.1) in geometric 
terms? First of all, we note that the metric perturbation (2.10) cannot 
affect the motion (3.1) at all, for the following reason: the particles C, C' 
must be assumed not to interact. Indeed, the phenomenon of deviation can 
only be meaningfully discussed for noninteracting particles: since the 
particles are formally treated as infinitesimally separated, any interaction 
force between them will go to infinity, and blow up the system. Physically, 
of course, the basic assumptions are (i) that the particle separation is so 
small that it can be treated to a good approximation as infinitesimal in 
the given external gravitational and matter fields, and (ii) that the masses 
and charges are then small enough, so that any interaction between the 
particles may be neglected. In the Infeld-Schild-Chase method, this is 
ensured by letting the masses and charges go to zero sufficiently fast, as 
the particles come closer together. In our approach, tile requirement of no 
interaction means that the particle near zones must not overlap. Hence the 
metric perturbations (2.11) in the near zones of C and C' are not correlated 
in any simple way; in particular, the Riemann tensors on C and C' need 
not be infinitesimally different in # .  

The problem is, thus, formally one of differing 'standards of infinitesi- 
reality': on the scale of lengths at which the particle separation is taken to 
be infinitesimal, the near zone cross-sections shrink to zero, and the finite, 
localized perturbation (2.11) is not well defined. Or, formulated from the 
other point of view: on the scale at which the near zones have finite cross- 
sections, C and C' are not infinitesimally separated, and the notion of 
differential forces between them ceases to apply. 

We shall take the particle separation to be infinitesimal, in the sense 
defined above, and the metric tensor on the worldlines to be the unperturbed 
g~k- We now consider the problem of geometrizing the deviation between 
C and C'; in particular, we ask whether it is possible to describe the relative 
motion (3.1) as a deviation between geodesics in some space. It is im- 
mediately clear that this must be more general than Riemannian space- 
time, since the right-hand side bracket of (3.1) will not in general have the 
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symmetries of a Riemann tensor; in fact, these symmetries require that the 
force f ie ldf  k be conservative:frk;o - O. So, we try to geometrize (3.1) in a 
general affine space d ,  endowed with an affme connection L~k~(x). 

In Appendix B we have reviewed a few properties of affine spaces. It 
turns out to be sufficient for our purposes to consider a metric  affine space 
d ;  the physical justification for this restriction is discussed in section 4. 
Comparing equation (B17) for geodesic deviation in d with equation 
(3.1) for the toal deviation between trajectories of identically charged 
particles in Riemannian space-time ~ ,  we identify the matter field dif- 
ferential force with the torsion terms, thus: 

A ,  -- (Uk~;p - Uk,~ U% - U~,s U%) W V ~ (3.2) 

with symmetric and antisymmetric parts 

f(,;o = Us,, US,~ V m V" (3.3) 

ftkm = (Ukzm;p -- U~s U%p) V m V p (3.4) 

The change of length of the separation vector X k is found, using (B. 14)- 
(B.17), to be: 

N2 X k 
( X  k Xk) = 2 X k  ~r~S 2 = 2 X  k Xt(Rkmp, + Uskp UStm) V m V p (3.5) 

Thus, as expected, only the symmetrized force gradient (3.3)--i.e. the 
expansion and shear--contribute to the actual strains induced between the 
particles C, C'. The antisymmetrized force gradient (3.4) appears as a 
'rotational' or 'spinlike' degree of freedom in the geometry of d ,  enabling 
the latter to simulate the 'twisting' or 'curling' action of nonconservative 
forces on charged particle trajectories. 

We have introduced 24 new field components--the torsion tensor T~k~-- 
to describe 16 matter field gradients fk;t. We may thus choose auxiliary 
conditions on the torsion, and it will be convenient to require that it--or, 
equivalently, the tensor U~k~--be traceless: 

Tklk ------ 0 = Uktk (3.6) 

It is then possible to deduce that identically charged test particles have 
L-geodesic motions (see Appendix B), from an L-conservation law for the 
energy tensor of the particles in d .  For a cloud of noninteracting point 
particles, we may define an averaged scalar mass density/z, and the energy 
tensor 

(p) 
E ~k = /zW l W k (3.7) 

where W k is the 4-velocity field associated with the streamlines of the mass 
distribution/z. We then have 

" "@Wi (3.8) Eiklt' = (tz Wk)Ik W~ + tz Wilk Wk  = tz Wilk WU = tz ~.@S 
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by (B.18), since the mass current vector/~1u k is assumed to be locally 
conserved (the meaning of local conservation in d is discussed below). 
Hence the L-conservation law 

(p) 

E~klk = 0 (3.9) 

implies that the streamlines of/~ are L-geodesics, 

- 0 ( 3 . 1 0 )  
9 s  

in complete analogy to the corresponding situation 

D W  k 
E~kk--0 ~ = 0  

; - -  D s  

(with/'-derivatives) for a cloud of noninteracting neutral mass monopoles 
i n~ .  The geodesic postulate for charged particle motion in d then follows, 
similarly as in ~ ,  upon going over to a discrete description of the particle 
distribution. Note also that, since the particle energy tensor is not F- 
conserved, 

(p) (p) 
0 ~ k t ~ E ik;k = --  Uiab E "b (3.11) 

We may interpret (3.11) as saying that there is a net force k i acting locally 
on the matter distribution ft. [This force per unit volume, which acts on a 
volume element containing very many particles--the idealization to a 
continuum description of matter--should not be confused with the force 
per unit mass (1.4), which acts on a single particle.] There is, however, a 
certain arbitrariness in the definition of the force (3.11), as will be discussed 
below. 

The main concern of this paper has been with the action of external 
forces on test particles; and accordingly the geometry o l d ,  i.e. the metric 
and torsion tensors, have been treated as fixed external constraints on the 
particle motions. We now conclude this section with a few general remarks 
on the problems involved in considering possible dynamical properties of 
the torsion field. 

One may introduce the torsion as a new physical field--or, rather, as 
representing additional dynamical degrees of freedom in the space-time 
geometry, not contained in the metric tensor. The essential task is then to 
describe the propagation of the torsion field, and its interactions, by means 
of field equations and conservation laws. Several such theories have been 
proposed. One example is the theory of Kibble (1961) and Sciama (1962) 
based on an action principle assuming two kinds of coupling between 
matter and geometry: energy to metric and spin to torsion; for non- 
spinning matter, their theory reduces to ordinary General Relativity. 
In the KS-theory, the matter spin-density is the source of a torsion field, 
which in turn induces an asymmetry in the matter energy tensor Etk. This 
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tensor is then, in turn, the source of a nonsymmetric tensor expression in 
the metric and torsion tensors and their derivatives, namely the affine 
Einstein tensor (B.13); the latter is the variational derivative of the KS 
free-field Lagrangian, which is the affine curvature scalar K in (B.12). 
However, it should be noted that Kis only one of many possible candidates 
for a Lagrangian, and that it is not even uniquely the 'simplest' scalar 
constructible from the metric and torsion. One may, for instance, add to 
(B.12) other terms quadratic in the torsion, such as Usab U ~ab, which would 
lead to different Euler-Lagrange equations in the action principle. Hence 
there is considerable arbitrariness in the choice of field equations for the 
torsion, and no obvious way of picking out a unique set by requirements of 
'simplicity'. (For instance, it is readily checked that the modification of 
the KS Lagrangian suggested above will yield Euler-Lagrange equations 
which differ from the KS ones only by additional quadratic terms in the 
torsion, and hence are not any 'less simple' in structure than the KS field 
equations.) This is in contrast to General Relativity, where the Riemannian 
curvature scalar R actually is the simplest Lagrangian constructible from 
the metric, in the sense that it is the only scalar that yields second order 
quasilinear field equations for the metric. 

Finally, we discuss conservation laws; the following remarks will apply 
irrespectively of whether we assume the torsion to have dynamical proper- 
ties. There is a certain ambiguity as to the physical meaning of conservation 
in ~' .  To see this, we recall two facts about affine spaces: (i) the difference 
between two connections, both defined over the same d ,  is a tensor in d ;  
and (ii) a coordinate frame can be found in which the connection vanishes 
at any one given point in ~r if and only if the space is symmetric. Let us 
then consider, in a symmetric affine space d ( ) ,  a covariant conservation 
law: i.e. a statement that a covariant divergence, with respect to some 
symmetric connection defined over d ( ) ,  vanishes. Coordinates can then 
be found in which this law reduces locally to a continuity equation (a 
vanishing ordinary divergence), which expresses the idea of conservation 
in physical terms: the change with time of some quantity Z inside a small 
spatial volume is due to the flux of Z across the surface bounding this 
volume, so that Z does not have local sources or sinks. The trouble is, 
however, that many symmetric connections may be defined over the same 
d (  ); in a Riemannian space N, for instance, both/'~kZ and (say) the object 

A~kz =-/'~kt + R~(k;O (3.12) 

(where R is the Ricci-tensor) are symmetric connections, and may be used 
in defining conservation laws, as described above. Moreover, the resulting 
laws are then physically different: if a quantity is/'-conserved, it is not 
A-conserved. Denoting the frame in which a symmetric connection L( ) 
vanishes locally as the local rest frame of L(), we may explain this by saying 
that the local rest frames o f / "  and A do not coincide, but are in mutual 
acceleration; hence a A-conserved quantity, say, will have sources (depend- 
ing on the tensor R~(k;~)) in a rest frame of / ' .  In order to make the notion 
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of conservation well defined, it is therefore necessary to choose the connec- 
tion relative to which the law is to apply. 

The choice of the Christoffel connection /" in General Relativity is, 
essentially, based on the following assumptions: 

(1) Special Relativity is the local limit of General Relativity: i.e. it is a 
valid theoretical description, when appropriate coordinates are chosen, 
of physical systems confined inside 4-volumes sufficiently small so that 
differential effects of space-time curvature on the systems can be neglected. 
(This is variously called the Principle of Equivalence and of Minimal 
Coupling; it clearly cannot be applied to systems directly coupled to 
curvature, such as spinning particle (Papapetrou, 1951). In order to make 
the Principle physically meaningful, we must assume that there exist 
systems to which it does apply, and that all cases where it does not can be 
satisfactorily accounted for by some definite system-curvature coupling.) 
Hence the local continuity equations, derived from covariant conservation 
laws as indicated above, are correctly described by this theory. 

(2) The 'appropriate coordinates' referred to in (1) are the local rest 
frames of F. Hence, if A (or any symmetric connection in ~ other t h a n / ' )  
were chosen as the basis for covariant conservation laws in ~ ,  then the 
local limit of these laws (continuity equations) would in general differ from 
the laws of special-relativistic physics. Since the rest frames o f / "  are 
observationally well defined in terms of space-time measurements, the 
observed validity of Special Relativity for a wide range of physical systems 
in these frames then furnishes a strong argument for taking _P as the basic 
affine connection for conservation laws in General Relativity. 

In a nonsymmetric affme space the situation is more complicated, since 
the total connection L can not be locally eliminated by a coordinate trans- 
formation. Hence an L-conservation law does not have a'special relativistic' 
local limit, in the usual sense: the continuity equation, as obtained in the 
local rest frame of some symmetric part L( ) of L, will in general always 
contain source terms depending on the torsion. In this case, it is no longer 
obvious how the symmetric connection L(), and thus the rest frames where 
local physical laws are to be valid, should be defined. In the case discussed 
above, equations (3.7)-(3.10), we have chosen L C ) - F;  however, it may 
be readily checked that essentially the same result (namely, that L-conserva- 

(p) 
tion of E i k ~  L-geodesic fluid streamlines W k) would be obtained by 
choosing L( ) equal to, say, 

P l u  =- L~kl) = P~kZ + Ui~kO (3.13) 

because of (3.6). In the local rest frame of/~, we would get an expression 
for the force density k l different from that of (3.11). One could argue that 
the choice L c ) - / "  is to be preferred, because it separates the purely metric 
effects encountered in General Relativity from those due to the torsion in 
d ,  whereas the choice (3.13) for a symmetric connection would 'mix' these 
two kinds of effects. Also, the Christoffel symbol /"  is, in a certain sense, 
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the 'simplest' connection which can be defined in d :  it is the only one 
which is constructible as a local function of the metric tensor and itsfirst 
derivative only. This follows from the above (i), and the fact that any tensor 
of odd rank, defined locally as a function of the metric tensor and its 
derivatives, must depend on metric derivatives of at least second order. 
However, such arguments are based more on formal simplicity than on 
physical considerations, and are perhaps not as convincing as in the case 
of General Relativity. 

4. Physical Interpretation; Discussion 

Summarizing briefly, we have considered a general charged test particle, 
acted on by some external force. It has been assumed that the particle 
interacts with the field, and thus modifies the space-time geometry; however, 
the effects of this interaction are assumed to fall off, away from the trajec- 
tory, so rapidly as to be effectively confined within the near zone. We have 
then studied the motion of the particle in this modified geometry f~, regarded 
as an external constraint on the trajectory; and investigated the properties 

must have, in order to be able to account wholly for the particle motion, 
if the latter is treated as a neutral mass monopole. 

Our aim has been to retain as much as possible of the properties of a 
point particlein Special Relativity: thus we have assumed that it remains 
pointlike in q--i .e ,  is at each instant localized within a locally flat (in- 
finitesimal) 3-volume--and therefore has a well-defined trajectory in this 
geometry. Also, we have required that the particle motion in ff be deter- 
mined solely by the local space-time geometry (metric and its first deriva- 
tive) on the trajectory, and that it be in fact geodesic in ~.  Hence the close 
analogy, in our treatment, between matter field forces and curvature forces: 
i.e. forces arising from the coupling of multipole particles to the inhomo- 
geneities of the gravitational field (second and higher metric derivatives), 
such as the spin-curvature coupling of Papapetrou (1951). Both arise 
because the particle carries charges, coupling it to the external field; and 
both are geometrized by 'transferring' the charge degrees of freedom to 
the local gravitational field. This fits in quite well with the fact that a 
geometrized matter field actually is a curvature effect, i.e. depends on 
second and higher metric derivatives, as noted in Section 1. It also makes 
unnecessary any assumptions as to whether the external matter field ~b 
is geometrizable or not. 

Our procedure will necessarily leave many features of the modification 
of geometry undetermined. A complete description of ~ in the near zone 
oq- would require consideration of the particle's reaction back upon the 
incident field, and thus make the problem essentially one of interacting 
fields in ~J'. In particular, one would have to choose a 'particle model', 
which can be done in different ways, even for the same field-particle system. 
[In the case of an accelerated electric charge, for instance, there is (a) the 
usual treatment of radiation reaction, where the trajectory remains well 
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defined, but there is no geometrization of force, no modification of the 
near zone geometry, and no consideration of the particle fields as such; 
and (b) the Misner-Wheeler wormhole model of charge, as lines of force 
trapped in a handle (Wheeler, 1962), where the concept of a one-dimensional 
trajectory is lost, and the system is one of interacting gravitational and 
(geometrized) electromagnetic fields.] Our approach has been to leave 
arbitrary the particle model (except for requiring that it be pointlike), 
accept the charges as phenomenological internal degrees of freedom for the 
particle, and investigate to what extent these degrees of freedom--or, 
more specifically, their effect on the particle motion---can be incorporated 
in the local geometry f~ on the trajectory. This obviously leaves a wide 
choice for the modified geometry elsewhere in Y .  

The perturbation (2.10) will in general create new matter field sources in 
the near zone 3-, as discussed in Section 2. This is not necessarily an 
objection to our procedure; we have shown that the energy tensor of such 
sources cannot affect the motion of the particle in ft. In fact, from a physical 
point of view we might well expect new sources to appear in Y if the particle 
fields, and their back-reaction on the external fields in the near zone, are 
taken into account; for instance, the action of an electromagnetic field on 
a Dirac particle (i.e., a charged spinor field) would presumably lead to 
spinor field sources in the near zone. Still, it would be interesting to know 
whether it is indeed possible, in general, to choose (2.10) such that no new 
sources appear in ~-': i.e. such that G~k and G~k satisfy the same algebraic 
conditions. Expanding G~k in terms of g~k = gu, + h~k, this leads to a set of 
coupled nonlinear second-order equations in h~k: 

S(hik,ab; hik,,,; hik) = 0 (4.1) 

We then have a Dirichlet problem: namely, that of finding solutions of (4.1) 
which fall off arbitrarily fast away from Y ,  on a family of spacelike hyper- 
surfaces. Mathematically, this problem is rather intractable (Miranda, 
1969); except in very special cases, little is known about whether solutions 
for such a set exist, let alone about whether they admit a boundary value 
problem. We have not succeeded in solving this problem, even in the simple 
cases of an electromagnetic or neutral scalar field. On physical grounds, 
however, we know that solutions of (4.1) exist; they represent mappings 
between different configurations of external fields 0 in 27. (These solutions 
even have a gauge group, corresponding to representations of the same 
configuration 0 in different coordinate frames; this can be used to normalize 
the hlk and their first derivatives to any desired values on C.) Moreover, 
many different localized configurations--i.e., geons--are known. We may 
therefore conjecture that solutions to the Dirichlet problem of (4.1) exist, 
i.e. that the perturbation (2.10) of f~ does not necessarily introduce new 
sources in ~--. 

One consequence of the approach adopted in this paper is that the geo- 
metrization of forces on one particle and that of differential forces on two 
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particles represent quite separate problems. As was discussed in Section 3, 
this is due to the basic assumption made about test particles: they are not 
to interact, and hence cannot have overlapping near zones. The requirement 
that two particles be infinitesimally separated then introduces a scale of 
lengths on which the perturbation (2.11) becomes infinitesimal, so that the 
only meaningful definition of the metric and its derivatives on the particle 
trajectories is the background field, as extrapolated in from the far zone, see 
Section 1. Consideration of the total deviation force (3.1) then led to the 
conclusion that the metric tensor by itself does not, in general, possess 
sufficient degrees of freedom to be able to 'simulate' the action of external 
differential forces on (identically charged) point particles: i.e. to describe 
the resulting trajectories as deviating geodesics in some Riemannian space. 
A more general geometry is needed, and we have restricted ourselves to 
considering a metric affine space d ,  see Appendix B. (The reason for 
assuming metricity is the following: in a nonmetric space, intervals and 
angles change under parallel displacement; hence, the characteristic period 
of a freely falling atomic clock would, in general, depend on its past history. 
This is, as is well known, a basic physical objection against nonmetric 
theories, such as, e.g. Weyl's unified field theory [see, for instance, Adler 
et al., 1965)], where the geometry is nonmetric, though torsionless.) It was 
found that the torsion field in d could be used to describe quite general 
differential forces on test particles. 

We stress that the notion of a torsion field, as introduced here, has nothing 
to do with the idea of a non-Riemannian unified field theory, such as have 
been proposed by Einstein and others; the torsion is not a dynamical field 
variable, but an external constraint imposed on the motion of particles. 
In fact, it can be regarded simply as an auxiliary field, used to describe the 
differential force (3.1) in geometric terms. Nor is it in conflict with the idea 
of geometrodynamics: that physical phenomena should in principle be 
describable in terms of Riemannian geometry only. To see this, consider 
the Misner-Wheeler geometrization of dectrodynamics (Wheeler, 1962), 
and take the case of an electromagnetic field acting on a pair of charged 
wormholes, assuming that radiation reaction and interaction between the 
wormholes can be neglected. In our picture, the 'particles' are treated as 
pointlike, and infinitesimally separated in an external (Lorentz) force field; 
the notion of a differential force between them then applies, and their 
motion is (as has been shown) geodesic in a nonsymmetric affine space. 
In the wormhole picture, the 'particles' are nonlocal objects, on the scale of 
lengths at which the metric and its derivatives change infinitesimally; and 
the notion of well-defined particle trajectories, and of differential forces 
between them, is no longer valid. The wormhole motion is then analogous 
to that of finite material bodies, coupled by their multipole moments to the 
curvature of Riemannian space-time. The difference between the two 
pictures is thus one of incompatible 'standards of infinitesimality', as was 
discussed in Section 3. Similar considerations clearly hold for any situation 
where both the external and particle fields are geometrizable, since (as 
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already noted) a geometrized matter field always appears as a nonlocal 
feature of the Riemannian metric of space-time. 

To sum up: we take the appearance of torsion to be due to the restriction 
we have put on our formal description of deviating test particles, namely 
that they be pointlike and infinitesimally separated. On a 'finer' scale of 
lengths, the torsion actually resolves into an averaged effect over many 
ripples in the space-time metric, somewhat analogous to the nonlocal 
geometrodynamical description of the Lorentz force (Wheeler, 1965). 

In conclusion, we note that our method is only applicable to timelike 
trajectories, since it is based on the notion of a rest frame. Since massless 
particles with charge (spin) exist, it would be interesting to find out whether 
the present procedure can be extended to geometrize the forces on lightlike 
trajectories as well, say by the use of null tetrads on lightlike hypersurfaces 
(Sachs, 1964); however, the need is not perhaps very great, since the known 
massless particles (such as photons) are usually assumed to move along 
lightlike geodesics anyway. 

Appendix A: Solvability of Equations (2.19) 

We adopt the following scheme for ordering the ten independent com- 
ponents of a symmetric 4 • 4-matrix into a '10-vector': 

i k = l l  22 33 12 23 31 14 24 34 44 
A = 1 2 3 4 5 6 7 8 9 10 (A.1) 

This is the ordering employed in the transition (2.18)4(2,19).  The 
10 • 10-matrix MAn in (2.19) is then symmetric, and its nonvanishing 
components are 

MI2 =M2 3 =M31 = �89 
M44 = Mss = M66 = --~ 
M77 = M88 = M99 = 1 
M1,10 = M2,10 = M3,10 = 1 (A.2) 

By standard manipulation (subtract the sum of the first three rows from 
the tenth row) the determinant of Man is readily found to be 

det (MaB) = --a-~ ~ 0 (A.3) 

The matrix MaB is thus nonsingular; hence, the set of equations (2.19) will 
have a unique solution vector KB(t) for any choice of the left-hand side 
vector Pa(t). 

Appendix B: Affine Geometry 
The general expressions below are adapted from Schouten (1954), with 

a somewhat different notation. At the end of this Appendix we give, for 
ease of comparison, the conventions involved in passing from Schouten's 
notation to ours. 
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A general affine space d is characterized by an affine connection Like(x), 
which has the usual transformation properties, but need not have any 
symmetries. Its antisymmetric part Llrkt] ~ Tigt, which transforms like a 
tensor, is called the torsion of d ;  if Tikl =-- O, the connection, and the space 
d ,  are said to be symmetric .  The connection L defines a parallel displace- 
ment (L-displacement, for short) and a covariant derivative (L-derivative, 
here denoted by a stroke); e.g. for a contravariant vector 

Ukrl ---- Uk, l + Lkml U m (B.1) 

The generalization of (B. l) to other tensors is then completely analogous to 
that of Riemannian tensor calculus, except  that the order of the lower 
indices in L is now important; we adopt here the convention of always 
putting the differentiation index last. 

One may always introduce a real symmetric nonsingular tensor field 
gig(X) and its inverse gik(x), to raise and lower indices in the usual way; 
however, in a general d it is not always possible to define such a 'metric 
tensor' with a vanishing L-derivative. The general expression for L in 
terms ofgik and Tikl is 

Ltg, = F~ki + giS(Tkts + T~k~ -- Tisk) -- �89 + gt~lk -- g~kli) (B.2) 

where P is the Christoffel symbol ofgik, constructed in the usual way. It is 
readily checked that /~ transforms like a connection in d ;  hence, we may 
define a parallel displacement and covariant derivative with respect to it 
(P-displacement and /"-derivative, the latter denoted by a semicolon), 
formally identical to the corresponding operations in a Riemannian space 
~ .  The absolute L-  and P-derivatives are the usual inner products of the 
corresponding covariant derivatives and the tangent vector dxk/dA on the 
curve x k = xk(A); we shall denote them by ~ and D, respectively, thus e.g. 
for tensors U, V: 

~ U k =_ Uk dx  I D Vkl dx  ~ 
~A I t S ,  ~ - Vkt ;~-  (B.3) 

Lengths and angles may be defined in d as in ~ ,  using coordinate 
differences and the tensor field gik as a metric. A geodesic in d is any curve 
x k = xk(?t) satisfying 

[dxk~ 
~-1 \dA-] = 0 (B.4) 

for some choice of the curve parameter A; those parameters for which 
(B.4) holds are called the affine parameters  of the curve. 

In a general ~r it is not always possible to define a metric tensor which 
is L-constant, i.e. 

g~kll = 0 (B.5) 

if this is possible, the space is said to be metric. In a metric ~r index raising 
and lowering commute with L-differentiation, and lengths and angles are 
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invariant under L-displacement. The remainder of this Appendix will 
consider metric affine spaces only. In this case, the connection (B.2) 
reduces to 

Zikt = ]"lkt --}- T*k, + Tkl I "4" Tzk t 

--/"tkz + U~z (B.6-) 
where it is convenient to introduce the tensor 

U~kl =- Ttkl + Tkz~ + T~u (B.7) 

with the symmetry property 
Ulkt =-- Uttkll (B.7a) 

It is readily checked that the inverse of (B.7) is 

T, kt = �89 + Uuk) (B.8) 

Because of the symmetry properties (B.7a) and T~ = T~tkt~, both U and T 
have 24 independent components. 

The curvature tensor in d is in general 
- -  l s t K kZm = 2(L kr*,rnl -b L krtL Islm]) (B.9) 

defined geometrically by L-displacing a vector around a closed infinitesimal 
loop, and measuring its resulting change, as in ~ .  Substituting (B.6) into 
(B.9), we find 

Kikt,, = Rlktm q- 2(Utktz;mj + U~ktl Ullslm]) (B.10) 

where Rtktm is the Riemann tensor in d ,  constructed from/'~u in the usual 
way. We shall also need its contractions 

Klk =--- K~ks = R~k + US~k.,~ -- U~it Ut,k (B.11) 

K - -  g~k Kik = R + U ~ab U~ba (B.12) 

and the 'affine Einstein tensor' 

Q,k = Kik -- �89 K (B. 13) 
Consider now the phenomenon of geodesic deviation in ~r Using (B.3), 

(B.4) and (B.6), it follows that a geodesic in d will, for any affine parameter 
~, satisfy 

~2XlC d 2 x k  -1r dxZdx" 
0 = - - ~ T =  dA2 + L  ~ - ~  

D2xk - k dx ldx"  (B.14) 
--  D A  2 q - U l m ~  

Note that a geodesic with respect to the connection L (an L-geodesic) is not 
geodesic with respect to F. Let C and C' be two neighbouring L-geodesics 
with tangent vectors V ~ = dxk/dA and separation vector r k (r = infinitesi- 
mal const.) at some point ;t = const, on C: i.e. 

V ~ DV k 
~---~ = D ~  + U*tm V' V" = 0 (B.15) 

7 
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For simplicity we may also assume (with no loss of generality) that C and 
C'  are initially parallel at A = const., i.e. 

~ X  k D X  k 
- -  + UklmX t v m = 0  (B.100 

~A DA 

We then have 

= t--- ~ "~ Uklm X l V m 

D Vt' ~ D X  k X t  
: " ~  + U ' . l  ] - - ~  + Uklm[p vm VP 

D 2 X ~ 
DA2 + Ukvz V l DXV V m V v 

- ~ + Uklmro X z (B.17) 

D 2 X k 
- DA 2 + (U~lm;v -- U~iv Uksm -- USmp Ukls) X I V m V p 

= (Rkmvl + Uklm;p --  USlv Uksm -- USmp Ukls) X 1 V m V p 

The geodesic deviation force in d is thus compounded of  the ordinary 
Riemannian term and extra terms involving the torsion and its gradient. 

We shall also need the following expression 

Aklk = Ak;k + U~zk A l (B.18) 

connecting the L- and _P-divergences of  any vector A s in ~r 
Finally, we give the correspondence rules connecting our index con- 

ventions with those of  Schouten. First of  all, our affine connection is the 
transpose of Schouten's: i.e., while he puts the differentiation index first, 
we put it last: 

Ltkz (Sch.) = L*~k (ours) (B.19) 

Second, Schouten writes the affine curvature tensor thus: 

Kmtk .l (Sch.) - 2[at,,U,]k]+ L'r,,isLStl~ (B.20) 

on transposing the connection as in (B.19), it follows that his curvature 
tensor is the total transpose of  ours: 

gmlk t (Sch.) = Kfklm ( o u r s )  (B.21) 

These correspondenc e rules make the sign convention for Schouten's 
Riemann tensor, see (B.10), agree with ours, as given in (2.8). It should be 
mentioned that Schouten's choice of kernel letters differs somewhat from 
ours (for instance, he writes K for the Riemann tensor and R for the 
curvature tensor, whereas we do the opposite); also, he uses Greek indices, 
while we use Latin ones. In order to display the above conventions more 
clearly, we have transcribed his notation to agree with ours in these respects. 
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